
Generalized Fibonacci lattices: dynamical maps, energy spectra and wavefunctions

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1991 J. Phys.: Condens. Matter 3 7255

(http://iopscience.iop.org/0953-8984/3/38/003)

Download details:

IP Address: 171.66.16.147

The article was downloaded on 11/05/2010 at 12:33

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/3/38
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J .  Phys.: Condens. Matter3 (1991) 7255-7268. Printed in the UK 

Generalized Fibonacci lattices: dynamical maps, energy 
spectra and wavefunctions 

J Q Youi.9, J Ryan?§, Tiansheng Xe$, Xiaobiao Zeng$l/ and 
J X Zhong§ 
t China Centre of Advanced Science and Technology (World Laboratory), PO Box 8730, 
Beijing 100080, People’s Republicof China 
t Laboratory of Atomic Imaging of Solids, Institute of Metal Research, Chinese 
Academy of Sciences, 12 Wenhua Road, Shenyang 110015, People‘s Republic of China 
P Laboratory of Modern Physics, Institute of Science and Technology, Xiangtan 
University, Xiangtan 41 1105. People’s Republic of China 

Received 4 February 1991, in final form 25 April 1991 

Abstract. Electronic properties of the generalized Fibonacci lattices are studied using the 
dynamical system technique, for which the off-diagonal tight-binding model is employed. 
The matrix and trace maps are obtained and investigated in a unified way. It is found that 
the energy spectra are Cantor-like and the wavefunctions are critical at many energies. For 
some systems, it is also shown that there are extended and localized wavefunctions. In 
addition, according to the degree of spatial extension or localization. two other types of 
wavefunctionsare further distinguished, of which one has the tendency to be extended and 
the other has the tendency to be localized. 

1. Introduction 

The physics of quasicrystals and aperiodic crystals in a broad sense has seen considerable 
development since the remarkable discovery of the icosahedral quasicrystals by Sbecht- 
manefal[l]. Recently, aclassofone-dimensional(~D)quasiperiodic (aperiodic)systems, 
i.e. the generalized Fibonacci lattices, has become attractive to the condensed matter 
physicists [2-191. Because of the development of the molecular-beam epitaxy technique, 
theFibonacci layered structure was artificially manufactured [20] and it becomes possible 
to produce arbitrarily layered structures as well as the generalized Fibonacci layered 
ones. In the theoretical aspect, the studies showed [2-191 that the generalized Fibonacci 
systems exhibit richer physical properties than the Fibonacci structure. All this knowl- 
edge indicates that the generalized Fibonacci systems deserve investigation and the 
exploration of their physical properties is of real significance. 

As the Fibonacci structure, the generalized Fibonacci systems are neither periodic 
nor random nor disordered, i.e. intermediate between the periodic crystals and the 
amorphous materials. Their underlying lattices are the generalized Fibonacci lattices, 
which are a straightforward generalization of the Fibonacci lattice. The separation of 
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successive lattice points of a generalized Fibonacci lattice takes value A or B and the 
sequence of its two kinds of tiles (building blocks) A and B is a generalized Fibonacci 
sequence that is generated by the recursion relation S,,, = {.S~IS~!J with So = ( B )  and 
SI ={A} ,  in which 13 1, and m and'n are positive integers [2]. From the construction 
rule of SI it follows that the total number F, of tiles A and B in SI obeys the recursion 
relation F,,, = mF,-, + nFl for 1 with FO = F, ='l. In'the h i t  I L m ,  the ratio of 
successive generalized Fibonacci numbers F , ,  ,/F, tends to a(m, n )  = f[(n' + 4m)'/* 
+ n ] .  The ratio F,, ,/F, is an optimal rational approximation to r(m, n). Alternatively, 
one can also produce the generalized Fibonacci sequences by means of the inflation rule 
(A, B )  + (A",'", A).  

In their investigation of the electronic properties of the generalized Fibonacci 
systems, Gumbs and Ali [2,3] derived several discrete trace maps for some generalized 
Fibonacci systems with specific m and n. Recently, a unified trace map for all m and n 
was derived by Kolif and Ali 1131 for dealing with the diagonal tight-binding model on 
the generalized Fibonacci lattices, and independently by You er a1 [14,15] to study the 
diagonal and off-diagonal tight-binding models on such aperiodic lattices. This unified 
trace map is the generalization of the well-known Kohmotc-Kadanoff-Tang (KKT) trace 
map [21] that was widely used to investigate the physical properties of the Fibonacci 
system [22-301. In this paper, we study in some detail the following off-diagonal tight- 
binding Schrodinger equation: 

J Q You er a1 

t n + I V n + 1  + r n V n - ~  (1.1) 

where 7pn is the wavefunction at the nth site for an electron state with energy E and the 
hopping matrix element r,, takes two values fa and fg arranged according to the gen- 
eralized Fibonacci sequences. Here the motivations are twofold. First, the off-diagonal 
model on the generalized Fibonacci lattices is more complicated and was investigated 
less as compared with the diagonal version of the tight-binding equation (1.1) 

V n t l  + V n - I  + V n V n =  EWo (1.2) 

where (V,) form the generalized Fibonacci sequences with two kinds of site energies V, 
and V,. Second, there are some mistakes in the existing literature, which are misleading 
to the understanding of the physical properties of the generalized Fibonacci systems. 

2. Dynamical maps and constants of motion 

In the matrix form, (1.1) can be written as 

qn+, = M(n + 1, n)Wn 

where qn is a column vector (yt,, V.- I)( and the transfer matrix is 

M(n + 1, n )  = 
0 

The wavefunction at an arbitrary site N is given by 

W N t l  = M(N)Vl 
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where 

M(“ = M(N + 1, N)M(N, N - 1). . . M(2,l) (2.4) 

is successive multiplications of the transfer matrices. 
If N = Fl, then MI = M(”r) generates the wavefunction at the generalized Fibonacci 

number site. From the construction rule of the generalized Fibonacci sequences one 
obtains that the transfer matrix MI satisfies the following recursion relation for the 
transfer matrices: 

Mol =MF,MY (2.5) 

with initial conditions 

M, = M(A,A) (2.6a) 

M2 = M(A,B)[M(B, B)]m-lM(B,A)[M(A,A)]“-l (2.6b) 

in which the four types of transfer matrices are 

and 

(2.7a) 

(2.76) 

(2.7c) 

(2.7d) 

It can be easily verified that MI and M, are unimodular, i.e. det M, = det M2 = 1, in 
which det denotes the determinant of a matrix. These initial conditions are different 
from those chosen by Gumbs and Ali [3]. As a matter of fact, the initial conditions 
chosen by them are only suitable to the Fibonacci lattice with (m, n )  = (1, 1). 

From the theory of matrices, the Nth power of the 2 X 2 unimodular matrix MI is 
given by [31] 

al%-dXJ - %-&O b / % - W  
MP=( 

CIQN - ,(XI 1 d?k- i (x l )  - Q N - & I )  

= “‘4- I(~I)MI - %-z(xOz 

where 
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xL = 4Tr MI = h(al + dl), in which Tr denotes the trace of a matrix, and "U&,) is the 
Nth Chebyshev polynomial of the second kind 

J Q You et ai 

which satisfies the recursion relation 

%(x / )  = a/QN-I(xI) - %$-2(X/). (2.10) 
Using (2.10) one can verify (2.8) by mathematical induction. 

From (2.5) and (2.8) we have 

X I + ]  = IT~(MY-IMY) = Q ~ , - I ( x / ) ~ ~ - I ( x / - I ) ~ / ~  1 - % - ~ ( X / ) ~ ~ - ~ ( X I - I ) X I  
- Q ~ - z ~ ~ l ~ Q m - l ~ ~ / - l ~ ~ / - l  + Q n - 2 ( x / ) Q l m - 2 ( X / - I )  (2.11) 

where 
girl = 4Tr(M1-,M,) = $(ala,-] + blcl-l + clbl-] + d,dl-]). (2.12) 

SinceTr(MIMttI) = Tr(M,Myl,M?) =Tr(M~lM;t1),itfollowsbyusing(2.8) that 

g1+2 = W x 1 ) Q m  - ] ( X I -  I )g/ t  I - Q.(xr)QU,- & / -  I b/ - q,- 1 b ) Q m -  1b-I- 11x1- 1 

+ Q. - 1 (XI P m  - 1 ). (2.13) 

Equations (2.11) and (2.13) constitute a unified trace map for the generalized Fibonacci 
lattices, Asimilarresult wasobtainedrecentlyby Kola? and Ali [13]. For theoff-diagonal 
model, the initial conditions for this unified trace map are 
xI = tTr MI = t ( E / f A )  x2  = &Tr M2 g, = 4Tr(MiMz). (2.14) 

From (2.5) it follows that 
(M;_12)m = M" /-IMF' 

where the inverse of the unimodular matrix Mt is 

(2.15) 
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This trace map was derived by You and Yang [14], and an analogous trace map was also 
obtained by KoIS and Ali [13]. The initial conditions for the off-diagonal model are 

x I  kTrM, = l ( E / t A )  xz = iTr Mz (2.20a) 

and 

x3 = Q,-1(x2)Qm-I(~I)g3 - Q"-l(~z)Qm-2(x,)xz 
- Qn-z(~2)Qm-l(x,)x, + Q"-z(xz)Qm-z(xl) (2,206) 

in which (2.206) is obtained directly from (2.11). When m = n = 1 in particular, (2.19) 
is reduced to the well-known KKT trace map for the Fibonacci lattice [21] 

X l t l  = 2 x / x , - ,  -x/-*. (2.21) 

The unified trace map (2.19) is the generalization of the KKT trace map. In the next 
section, we will use it to obtain the energy spectra of the generalized Fibonacci lattices. 

Since the 2 x 2 real transfer matrix M, is unimodular, it may be specified by only 
three numbers and then the matrix map (2.5) can be considered as a 6D dynamical 
system.Theunifiedtracemap(2.19)and thatexpressed by(2.1l)and(2.13)areobtained 
byintroducingthe traceofthematrixM,. Thesetracemapsaretworeduced3Ddynamical 
systems and can be regarded as the projections of the full 6D dynamical map onto two 
3D orbits. In addition, it can be derived that 

[,+I = Q L l ( x l - l ) h  l a 2  (2.22) 
where 

I ,  = f[Tr(Mi'Mi-'lMIMI-l) - 21 =g:+] + xf 
in which 

- 2g,+Ix,xc-l - 1 (2.23) 

When m = 1, I, = I ,  i.e. the quantity I ,  is independent of 1. Now (2.23) serves as the 
constant of motion. This kind of invariant was obtained by Holzer [5] and Dotera [6]. 
In this case, the trace map (2.19) and that given by (2.11) and (2.13) can be further 
reduced to ZD dynamical maps. As m > 1, there is no invariant of the form (2.23) for the 
dynamicalmotion. Thequantity Ilnow actsas the pseudoinvariant. WhenQm-,(x+J = 
0 in particular, then I, = 0 and this surface plays as the role of an attractor [lo, 131. 
Recently, Suzuki [32] obtained a different kind of invariant in the case of m = 1: J = 
(-l)/Tr(PM,- IM/MF>lMF1), in which P E M(2, C) with Tr P = 0. However, for the 
generalized Fibonacci lattices with m > 1, whether there is any invariant or not is still 
an unsolved problem. 

3. Energy spectra 

The energy spectra of the off-diagonal tight-binding modelson the generalizedFibonacci 
lattices are determined by the behaviour of the unified trace map (2.19) or that repre- 
sented by (2.11) and (2.13). Here we only use the trace map (2.19). Merely by studying 
it, one can obtain the energy spectra of the generalized Fibonacci off-diagonal models. 
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A generalized Fibonacci lattice can be approximated by a sequence of periodic 
lattices with progressively larger unit cells of size Fl as defined by the optimal rational 
approximations to r(m, n). According to the Bloch theorem, one has 

*Fi+l = e x p ( x F M 1  (3.1) 

where K is the wave vector and F1 the size of the unit cell. From (2.3) and (3.1) we thus 
have 

, ,  

Y F,+ I = MIY = exp(XFl)Y 

cos(KFl)  = tTr M, =A-,. 

(3.2) 

(3.3) 

which yields 

From (3.3) we then obtain the conditions for bands and gaps in the energy spectrum 

bands: lxI  I e 1 (3.h) 

gaps: lxll > 1. (3.46) 

The energy spectrum of the off-diagonal model on a generalized Fibonacci lattice is 
obtained in the limit I - +  m. 

Energy spectra are presented, as examples, in figures'l(a)-(d) for the periodic 
systems with periods Fl = mFtMz + nFl- I for 1 3 2 with Fo = F ,  = 1, in which (m,  n) = 
(1, l), (1,2),  (2.1) and (3, l), respectively. The two kinds of hopping matrix elements 
are chosen to be I, = 1 and Is = 2.  One can see that each spectrum consists of FI bands 
andF1- lgapsatthelthiteration.Aslgetslarger,moregapsappear. Inthelimitl-tm, 
it can be concluded that the gaps are densely populated in the energy spectra. Another 
feature of the energy spectra is that the spectra are self-similar, which is clearly demon- 
strated in figures l(u)-(d). The self-similarity and the dense distribution of the energy 
gaps mean that the energy spectra of the generalized Fibonacci lattices are Cantor-like. 

For each of the energy spectra shown in figures I@)-(d) we can derive a family tree 
ofenergybands(see figuresl(a)-(d)). Infigure2(a) the productionruleis(A, B) -+ (AB, 
A), i.e. an A-band generates an A-band and a B-band, while a B-band becomes an A- 
band. In figures2(b)-(d) the production rules are (A, B)+(ABA,A) (A, B) + (BAB, 
A)and(A,B)-+ (BABB,A), respectively. Itcan beeasilyderivedthatthetotalnumber 
of energy bands (A-bands and B-bands) at the lth generation of each family tree is Fl = 
mFl-, + nFl- for 12 2 with Fo =F1 = 1. This conclusion matches the observation from 
figures l(a)-(d) that each energy spectrum is composed of Fl bands at the lth iteration. 
According to the family trees of bands, one can index any band in the energy spectra. 
However, other kinds of family trees of bands can,also be introduced, yielding the 
indexing scheme non-unique. For instance, the production rule for figure l(b) can also 
be chosen as (A, B) + (AAB, A) or (A, B) + (BAA, A). In addition, one can choose 
the production rule (A, B) -t (BAB, AB) to construct a different type of family tree of 
energy bands (see figure 3), since the total number of bands at the lth generation is still 
Fl= F,-z + 2F1-,, in which13 2andF0 = F1 = 1. 

4. Wavefunctions 

From (2.3) and (2.4), namely by successive multiplications of the transfer matrices, one 
can obtain numerically the wavefunctions of the generalized Fibonacci systems. Here 



Generalized Fibonacci lattices 7261 

I I 

Figure 1. Energyspectraoftheoff-diagonal tight-binding modelswith I,, = 1 andr, = 2.The 
systems are periodic approximations to the generalized Fibonacci lattices, of which the unit 
cellsareofsize F,= mF,.> t nF,., f o r i 2  Zwith Fo = F,  = 1. ( a ) m  = l , n  = 1 , 1  = 2.3.4.5 
and% ( b )  m = 1.n = 2. I =  2.3 and4; (c) m = 2 , n  = 1, I =  2,3,4andS;(d) m = 3. n = 1 ,  
1 = 2,3and4. TheenergyspectraforthegeneralizedFibonaccilatticesaregivenbythelimit 
1-m. 

the two kinds of hopping matrix elements are chosen to be t, = 1 and t, = 2. In the 
calculation of the wavefunctions, we also monitor the quantityx, and make sure that the 
chosen energies are the allowed energies of the considered systems, i.e. the condition 
[xlI 1 is satisfied for the chosen energies. In section 4.1 we present the wavefunctions 
at E = 0, while the wavefunctions at E # 0 are investigated in section 4.2. 

4.1. Wavefunctions at E = 0 
Four systemswith (m,n) = (1, I), (1, 2), (2,l) and (3,l) arestudied, whicharecomposed 
of 1597, 1393, 1365 and 1159 sites, respectively. Figures 4-7 are their wavefunctions 
numerically calculated at E = 0. For the sake of clarity, the wavefunction against 683 
sites are plotted in figure 6. One can see from figures 4 and 5 that the wavefunctions are 
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A 

1 2  3 4  5 6  
I 

I C 1  

A 

A 

1 2  3 4 5  
I 

B :bE A 

1 2 3 4 
1 

[ d l  

A 

8 A 

1 2 3 4 
I 

Figure 2. Family trees of energy bands for the energy spectra shown in figures l(a)-(d), for 
which the productionrulesarcchosen as (a) (A, E )  -+ (AB, A),  (b)  (A, E ) +  (AEA, A),  (c) 
(A,B)+(BAB,A)and(d)( .4 ,  E)-(BABB,A),respectively. 

A 

A 

8 
8 

1 2 3 4 
1 

Figure 3. Family tree of energy bands for the 
energy spectrum shown in figure l(b),  which is 
heremnslructed byadifferent rype ofproduction 
rule(A, B)-t(BAB,AB). 



Generalized Fibonacci lattices 7263 

Figure 4. Wavefunction of the sys- 
tem with (m. n) = ( I ,  I ) ,  which is 
calculated at E = 0 and exhibits 
typical critical characteristic. The 
two kinds of hopping matrix 
elements are chosen to be I* = 1 
and tg = 2 in this figure and the fol- 
lowing ones. 

Figure 5.  Wavefunction of the sys- 
tem with (m. n)  = ( I ,  2). which is 
calculated at E = 0 and shows criti- 
cal characteristic. 

critical, i.e. self-similar and neither extended nor localized in a standard fashion [23,28, 
291. We have also calculated the wavefunctions at E = 0 of some systems embodied in 
those with m = 1 and n 3 3 and found that they are critical as well. However, the 
situation differs as m # 1. For instance, the wavefunctions shown in figures 6 and 7 are 
quite different from each other; one is extended with two kinds of amplitudes and the 
other has a strong degree of spatial localization in each of the two peaks. It can be seen 
that the extended behaviour of the wavefunction plotted in figure 6 is consistent with 
the character of the energy spectrum of the system with (m, n) = ( 2 , l )  that there are 
larger bands and smaller gaps in the central region E - 0 of the energy spectrum (see 
figure l ( c ) ) ,  and the spectrum tends to be continuous in this region as I+ m. Contrary 
to our numerical result, Gumbs and Ali [3, 81 claimed that they found a new type of 
localized wavefunction at E = 0 for the system with (m. n) = (2,l). In our judgment, 
their results for the system with (m, n) = (2 , l )  as well as those with (m, n) = (1.2) and 
(1,3) were calculated in error, since they chose by mistake the initial conditions only 
suitable to the Fibonacci lattice with (m, n) = (1,l) as those of the matrix map (2.5) for 
all the generalized Fibonacci lattices. 



7264 I Q  You et a1 

Fiyre6 .  WavefunctionatE= Oof 
the system with (m, n) = (2, 1). 
which is extended with strong 
degree of spatial extension. 

Figure 7. Wavefunction at E = 0 of 
the system with (m,  n) = ( 3 ,  I), in 
which each of the two peaks has 
strong degree of spatial localiza- 
tion. 

4.2. Wavefunctions at E # 0 

It wasfoundfortheFibonaccilattice [23,28,29] that therearealsomanyenergiesexcept 
E = 0, at which the wavefunctions are still critical. As to the generalized Fibonacci 
lattice with (m, n) = (1,2), the situationissimilar. However, for the generalizedFibon- 
acci lattices with (m. n) = (2, I) and (3,1), the situation is more complicated. 

Figures 8 and 9 are the wavefunctions of the system with (m, n) = (2, l), which are 
numerically calculated at E = 1.0972226 and 2.62525247, respectively. One sees that 
the wavefunction at E = 1.0972226 has the tendency to be localized, while that at 
E = 2.62525247 is critical. However, the degree of spatial localization is not strong for 
the wavefunction at E = 1.0972226. The wavefunctions showninfigures 10-12 are those 
of the system with (m, n) = (3, l), which are calculated at E = 1.000685, 1.4997 and 
1.552472566785, respectively. It is clear that the wavefunction at E = 1.000685 is 
extended, while that at E = 1.552472566785 is localized with strong degree of spatial 
localization. As for that at E = 1.4997, although the wavefunction is still critical, it has 
some degree of spatial extension. In addition to the above energies, it is found in our 
numerical calculations that there are many other energies at which the wavefunctions 
are critical. It is also found that when the wavefunction is extended at a certain energy, 
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Figure 8. Wavefunction of the sys- 
tem with (m, n) = (2, l), which is 
calculated at E = 1.0972226 and 
has the tendency to be localized. 

Figure 9. Wavefunction of the sys- 
tem (m, n )  = (2, l ) ,  which 1s cal- 
culated at E = 2.62525241 and 
shows critical characteristic. 

Figure 10. Wavefunction of the sys- 
tem with (m, n) = (3, I), which is 
calculated at E = 1.000685 and has 
strong degree of spatial extension. 
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Flgurell. War.eiunctionofthesys. 
tem with (m. n) = (3, 1) .  which is 
calculated at E =  1.4997. Though 
the wavefunction is still critical, it 

0 1159 has some degree of spatial exten- 
Irion. n 

Figure 12. Wavefunction of the syr- 
tem with (m.n) = (3,  l ) ,  which is 
calculated at E =  1.552472566785 

0 11% and has strong degree of spatial 
" localization. 

a wider energy region in the vicinity of this energy always exists, in which the wave- 
functions are extended or tend to be extended. As for the localized wavefunctions found 
in our calculations, they only seem to exist in extremely narrow energy regions. 

For the hopping matrix elements chosen as t ,  = 1 and tg = 2, it is found in our 
calculations that theenergyspectra are symmetricabout the line E = 0. For thesystems 
with (m,  n) = (1,2) and (2.1). the energy E = 0 is allowed for all finite systems of size 
F,, 13 1, implying that E = 0 is the allowed energy of the infinite systems as well. This 
conclusion can be easily derived by studying the trace map (2.19) with (m, n )  = (1,2) 
and (2, l), respectively, since x,  = 0 for E = 0 and all positive integers I ,  yielding the 
condition lx,l s 1 always satisfied. However, the energy € = 0 is allowed only for some 
finite systems with (m, n) = ( 1 , l )  and (3,l)  (see figures l ( a )  and (d)) .  As for other 
energies(€ # 0) employed inournumericalcalculations, they are allowed for thechosen 
finite systems. 

From (2.22) and (2.23) it can be seen that there is a well-definedconstant of motion 
Zfor the system with tn = 1 and n 3 1,  while there is not such an invariant for the systems 
withm # 1. The quantity Ihasasimilarform to that of the Fibonaccilattice [21], which 
remains invariant under the transformation (2.19) and does not flow to I = 0 or I = -. 
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Since I = 0 and I = m correspond to the extended and localized states, respectively, 
therefore the invariant behaviour of I under the transformation (2.19) indicates that the 
wavefunctions are neither extended nor localized in a standard way [ZS]. This is why the 
appearances of the wavefunctions of the systems with m = 1 and n 3 1 are analogous to 
one another and the situation differs for the systems with m # 1. 

Asthose of theFibonaccilattice [29,33-351, theenergyspectra and the wavefunctions 
of the generalized Fibonacci lattices are generally multifractal, which can be studied 
using the calculational method developed by Halsey eta1 [36]. For several generalized 
Fibonacci lattices with m = 1, Holzer [4] calculated the multifractal indicesfla) and CY 
and found that the curvesf(rY) vs (Yare continuous and analogous to that for the Fibonacci 
lattice withslight differencesinnumericalvalues. Forthecriticalstatesofthegeneraliied 
Fibonacci lattices with m # 1, the situation should be similar since continuous multi- 
fractal indices are the generic feature of the critical states 1341. However, there are also 
extended and localized states in the generalized Fibonacci lattices with m # 1, of which 
the indicesf(a) and 01 are completely different from those of the critical states. For the 
extended states,f(n) consists of two points and the indicesf(@) and a are determined at 
a single point by (a, f(01)) = (1, l), while  CY) and CY are (CY, f la))  = (0,O) and (a, 
fla)) =(;e, 1) for the localized states [34.35]. In addition, there are wavefunctions with 
the tendency to be extended or localized in the generalized Fibonacci lattices. These two 
kinds of wavefunctions also exist in the Fibonacci lattice [33], of which the multifractal 
indices are different in numerical values from those of the typical critical wavefunctions 
as shown in figures 4 and 5 ,  Since these wavefunctions look similar to those of disordered 
systems at the mobility edges, it becomes necessary and important to study in detail 
the nature of these exotic states in the generalized Fibonacci lattices and explore the 
possibilities of the presence of mobility edges. 

5. Summary 

The electronic properties of the generalized Fibonacci lattices are studied. The model 
used is the off-diagonal tight-binding model. The dynamical maps are obtained. which 
determine the spectral behaviour of the electron states of the generalized Fibonacci 
lattices. It is found that the energy spectra are Cantor-like, i.e. they are self-similar and 
exhibit dense distributionsof energy gaps. For some systems, it isclear that in the energy 
spectra there are certain energy regions in which the bands are larger, with vanishing 
gaps. 

Associated with theexoticfeaturesoftheenergyspectraofthegeneralizedFibonacci 
lattices, the wavefunctions are critical at many energies. I t  is found for some systems 
that there are wavefunctions which are extended or localized in certain energy regions. 
However, for the localized electron states, the corresponding energy regions are 
extremely narrow. In these systems, wavefunctions with the tendency to be extended or 
localized are also found, which look similar to those of the disordered systems at the 
mobility edges. 
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